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ABSTRACT
Recent work introduces approval with runoff voting, inwhich voters

cast approval ballots, two finalists are selected, and a runoff election

is conducted between them to choose the final winner by majority

voting. While the more common plurality with runoff voting admits

only one reasonable choice of the two finalists (the two candidates

with the most plurality votes), the use of approval ballots in the

first stage opens up the possibility of using many reasonable ways

to choose the two finalists. What is the optimal way to choose the

two finalists?

In this work, we answer this question using the distortion frame-

work, in which the performance of every voting system is quanti-

tatively measured by its worst-case social welfare approximation

ratio, also known as distortion. We prove that the best distortion

achievable by approval voting with (majority) runoff is Θ(𝑚2) with
deterministic finalist selection and Θ(𝑚) with randomized final-

ist selection, where 𝑚 is the number of candidates. This is actu-

ally worse than what simple approval voting without any runoff

achieves (Θ(𝑚) and Θ(
√
𝑚), respectively). We pinpoint the use of

majority runoff in the second stage as the culprit, propose a can-

didate proportional runoff system that declares each finalist the

winner with probability equal to the fraction of voters who prefer

it, and analyze the extent to which it can help curb the distortion.
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1 INTRODUCTION
Two-stage voting is a widely-used democratic process to aggregate

voters’ preferences into a single winner. In general, a two-stage

voting mechanism elicits information about voters’ preferences

over the candidates and admits a subset of the candidates to the

second stage, at which point another round of information elic-

itation through voting ballots decides the final winner. Plurality
with runoff is the most famous two-stage voting mechanism and is

the most commonly used all around the world to elect presidents.
1

In this method, each voter is asked to report their most preferred

candidate in the first round, and if a candidate receives a simple

1
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majority (more than half) of the votes, he wins the election. Oth-

erwise, the two candidates with the highest number of votes are

admitted to the second round, and majority voting between them

determines the final winner.

Having a runoff round is beneficial for several reasons. For in-

stance, even if a voter’s top choice does not have a chance to be

the winner, his vote still counts and might affect the outcome of

the election through the second round. In addition, there is room

for debates between the two rounds, and voters can deliberate on

their decision. Furthermore, the final winner of voting rules with

runoff will have the support of the majority of the voters. However,

plurality with runoff has several downsides that have been exten-

sively studied in the literature [14]. In this regard, Delemazure et al.

[14] raised the following question:

“... is it possible to keep the nice benefit of the two-round
protocol without having to bear all the drawbacks of
plurality at the first round?”

With uni-nominal ballots, we are limited to choosing the two

candidates with the highest plurality scores as the finalists. One

approach to give a positive answer to the above question is to use a

different ballot design. To this end, Delemazure et al. [14] suggest

approval ballots for the first round.

Approval with runoff voting rules not only are theoretically in-

teresting but also have been used in practice. In 2021, the mayoral

election of St. Louis (Missouri, US) used this rule. In the first round,

44,571 voters cast approval votes for four candidates. The two can-

didates with the highest number of approvals were admitted to the

second round, and the (uni-nominal) vote of 58,237 voters deter-

mined the final winner of the election.

Using approval ballots in the first round enables the voting mech-

anism to apply a wider range of rules to admit two candidates to

the runoff round [14]. This raises the problem of finding the optimal
way of selecting the two finalists. Delemazure et al. [14] study this

problem by comparing various rules designed for approval-based

committee selection (in short, ABC rules), using an axiomatic ap-

proach. However, they do not specifically discuss the quality of the

final winner of the election.

Our goal is to compare different approval with runoff voting

rules using a quantitative approach. Specifically, we use the implicit
utilitarian framework introduced by Procaccia and Rosenschein

[26], which postulates that voters have cardinal utilities for the

candidates and the vote that each voter submits stems from his

utilities. For example, if the voting ballot asks a voter for his ranking

over the candidates, it is assumed that he ranks the candidates

in a non-ascending order of his utility for them. Similarly, with

approval ballots, it is assumed that each voter only approves the

candidates for which his utility is higher than a specific threshold.

Our assumption is that all the voters use the same threshold; one

interpretation is that the election designer decides on the threshold

https://en.wikipedia.org/wiki/Two-round_system


and asks the voters to approve all candidates for which their utility

is above the threshold. One could consider a more general setting

in which voters use different thresholds, but in this case, no rule

has desirable distortion (independent of the number of voters).

In this framework, the social welfare of a candidate is defined
as the sum of the utilities of all the voters for her, and the optimal

candidate is considered to be the one with the highest social welfare.

The goal of a voting rule is to minimize the worst-case ratio between

the maximum possible social welfare to the social welfare of the

selected outcome. This quantitative measure is called distortion.
When comparing different approval with runoff voting systems, we

seek a pair-selection rule, which selects a pair of candidates based on
approval ballots, such that applying this rule followed by a majority

runoff achieves low distortion.

We also analyze the effect of the majority runoff stage on the

quality of the selected winner by contrasting it with two alter-

natives: (1) conducting approval voting without a runoff and (2)

conducting approval voting with a proportional runoff. The former is

the standard single-stage approval voting in which a single winner

is selected directly based on the approval votes. In the latter, instead

of deterministically selecting the finalist preferred by a majority, we

select each finalist with a probability proportional to the number

of voters who prefer her to the other finalist in the runoff round.

We find the optimal distortion values achievable in almost all three

settings by both deterministic and randomized rules.

1.1 Our Results
We consider a voting setting with 𝑛 voters and𝑚 candidates. Each

voter has a utility for each candidate and following the literature [5]

utilities of a voter for different candidates sum up to 1. We assume

that each voter casts his approval ballot considering threshold 𝜏 ∈
[0, 1]. This value is either selected by the election designer or is

obvious from the context of the election.

We begin by analyzing the single-stage approval voting (without

runoff), which we use as a benchmark to compare with the distor-

tion values in the other with-runoff settings. We achieve (asymp-

totically) tight bounds on distortion for all values of 𝜏 ∈ [0, 1]. For
deterministic rules and for any 𝜏 ∈ [0, 1], we can achieve optimal

distortion by selecting the candidate with the highest number of ap-

provals. We show that, among all possible thresholds, 𝜏 = 1

𝑚 gives

us the optimal distortion which is Θ(𝑚). For randomized rules, we

can achieve better distortion bounds. The optimal distortion value

is Θ(
√
𝑚) which is achievable at 𝜏 = 1√

𝑚
.

Next, we turn to approval voting with a majority runoff. In this

case for deterministic rules, we show that by admitting the two

candidates with the highest number of approvals to the runoff, we

can achieve optimal distortion for all values of 𝜏 ∈ [0, 1]. However,
in comparison to the without runoff version, distortion increases by

a factor of𝑚 for all values of 𝜏 . In this setting, among all thresholds,

𝜏 = 1

𝑚 gives us the optimal distortion of Θ(𝑚2). Moreover, for

randomized rules, the optimal distortion increases to Θ(𝑚). We

pinpoint the use of majority runoff as the culprit.

To curb distortion in two-stage approval voting, we propose and

analyze approval voting with proportional runoff. We find that by

choosing the two candidates with the highest number of approvals

(the rule that is optimal for the voting with a majority runoff) we

Table 1: Summary of results for the optimal distortion values
of approval voting with different runoff scenarios. All upper
bound results use the threshold 𝜏 = 1

𝑚 , except for the case of
randomized rules with no runoffs which uses 𝜏 = 1√

𝑚
.

No Runoffs Majority Proportional

Deterministic Θ(𝑚) Θ(𝑚2) Θ(𝑚)
Randomized Θ(

√
𝑚) Θ(𝑚) 𝑂 (𝑚), Ω(𝑚0.6)

can get back to Θ(𝑚) distortion. This improvement also holds for

all values of 𝜏 . However, for randomized rules, we show that we

cannot decrease the distortion to𝑂 (
√
𝑚) as any rule incurs Ω(𝑚0.6)

distortion.

All missing proofs are available in the full version.
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Finally, we conduct simulations based on synthetic data, and

real-world data sets of ranked preferences [24]. We evaluate the

empirical performance of several ABC rules by measuring their

average-case approximation ratio of the maximum social welfare.

2 RELATEDWORK
This work extends the notion of distortion in the utilitarian frame-

work [26], which has been extensively studied over the past decade

[2]. Caragiannis and Procaccia [13] show that the distortion of the

plurality rule is 𝑂 (𝑚2). This bound is proven to be the best pos-

sible among the deterministic ordinal voting rules [12]. Boutilier

et al. [10] prove that any randomized rule incurs a distortion of

at least Ω(
√
𝑚) and present a randomized rule with distortion

of 𝑂 (
√︁
𝑚 log

∗𝑚). Recently, Ebadian et al. [15] closed this gap by

proposing the stable lottery rule which achieves Θ(
√
𝑚) distortion.

Borodin et al. [9] extend this result for the case that we only have

access to the top-𝑡 preferred candidates of each voter.

There is also a large body of literature onmetric distortion, where

voters and candidates are assumed to be embedded in a metric

space [1, 3]. In this setting, the distortion of any deterministic rule

is known to be at least 3, and recently, it has been proved that this

distortion is achievable [20, 22]. In addition, there are several works

that consider a specific setting and give bounds on the distortion or

design algorithms with good distortion in that setting [16–19]. A

closely related one is the work of Pierczyński and Skowron [25] that

discusses the distortion of approval voting in the metric setting.

Another line of research that our work is built on is approval

voting. Voting with approval ballots has gained a lot of attention in

the past decade [4, 11, 21, 23]. This type of voting ballot is useful

in different settings, for instance, Benade et al. [7] considers the

distortion of threshold approval votes in participatory budgeting.

Moreover, the approval voting with runoff rule which we are inves-

tigating was introduced by Sanver [27] and further investigated by

Delemazure et al. [14].

3 PRELIMINARIES
For 𝑡 ∈ N, define [𝑡] = {1, 2, . . . , 𝑡}, and for a finite set 𝑆 , define

Δ(𝑆) to be the set of all probability distributions over 𝑆 .

2
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A single-winner election consists of a set 𝑁 = [𝑛] of 𝑛 voters,

and a set𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} of𝑚 candidates. We assume that each

voter 𝑖 ∈ 𝑁 has a utility function 𝑢𝑖 : 𝐶 → R⩾0 over the candidates,
where 𝑢𝑖 (𝑐) is her utility for candidate 𝑐 . For 𝑥 ∈ Δ(𝐶) we define
𝑢𝑖 (𝑥) = E𝑐∼𝑥 [𝑢𝑖 (𝑐)]. Following the literature [6], we work with

unit-sum utility functions, where

∑
𝑐∈𝐶 𝑢𝑖 (𝑐) = 1 for each 𝑖 ∈ 𝑁 .

Let ®𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) be the utility profile. Define the social

welfare of a candidate 𝑐 ∈ 𝐶 to be SW(𝑐, ®𝑢) =
∑
𝑖∈𝑁 𝑢𝑖 (𝑐). The

goal of the election is to select a candidate with the maximum

social welfare. The challenge is that we do not have access to the

utilities, and eliciting them directly would place an undue cognitive

burden on the voters. Hence, the election designer designs a voting

system, which operates in one or more sequential stages. In each

stage, a voting ballot elicits some partial information about voter

utilities, and the design of the ballot may depend on the information

collected in previous stages.

We are primarily interested in two voting systems: (single-stage)

approval voting and (two-stage) approval voting with runoff.

3.1 Approval Voting
Single-stage approval voting is conducted using approval ballots,

where each voter approves an unranked subset of the candidates.

We model this using a threshold 𝜏 ∈ [0, 1] such that each voter

approves all the candidates for which she has utility at least 𝜏 .

When 𝜏 is explicitly set by the designer, this is known as threshold

approval voting [8], but it can also be used as a model for the voters

converting utility functions to approval votes. We refer to such

ballots as 𝜏-approval ballots.

Let𝜋𝑖 ⊆ 𝐶 be the approval vote of voter 𝑖 , and ®𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑛)
be the approval profile. A (randomized) approval voting rule 𝑓 :(
2
𝐶
)𝑛 → Δ(𝐶) maps an approval profile to a distribution over the

candidates. We say that 𝑓 is deterministic if it always outputs a

distribution with singleton support.

3.2 Approval Voting with Runoff
Approval voting with runoff is a two-stage election system. In the

first stage, a pair of candidates are selected as finalists based on

approval ballots submitted by the voters, and in the second stage,

an election (called a runoff) is conducted between the two finalists,

where each voter specifies whom she prefers more and a runoff

rule is used to select the winner. To ensure that voters break ties

between equal-utility finalists consistently in the runoff election,

we assume that each voter 𝑖 has a ranking 𝜎𝑖 : [𝑚] → 𝐶 , where

𝜎𝑖 ( 𝑗) refers to the 𝑗-th most preferred candidate of voter 𝑖 that is

consistent with her utility function, i.e., 𝑢𝑖 (𝜎𝑖 ( 𝑗)) ⩾ 𝑢𝑖 (𝜎𝑖 ( 𝑗 ′)) for
all 𝑗 < 𝑗 ′. In the runoff election between any two finalists, each

voter 𝑖 votes for the one who is higher up in her ranking 𝜎𝑖 . Let

®𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛) denote the profile of these rankings.
Formally, in the first stage, a (randomized) approval-based pair-

selection rule 𝑓1 :

(
2
𝐶
)𝑛 → Δ

(
𝐶2

)
takes as input an approval

profile and returns a distribution over pairs of candidates. In the

second stage, a runoff is conducted between a pair of candidates

(finalists) sampled from this distribution. For notational simplicity,

we say that a runoff rule 𝑓2 takes as input the distribution over pairs

of candidates from the first stage 𝑓1 ( ®𝜋) and the ranking profile ®𝜎
and returns a distribution over the candidates. Together, we can

denote an entire system of approval voting with runoff as a voting

rule 𝑓1 ◦ 𝑓2 ( ®𝜋, ®𝜎) = 𝑓2 (𝑓1 ( ®𝜋), ®𝜎). In this work consider two runoff

rules:

• Majority Runoff (maj). This is the canonical runoffmethod, in

which, once a pair of finalists is sampled from the distribution

returned in the first stage, the finalist preferred by a majority

of the voters is selected as the winner (deterministically).
3

• Proportional Runoff (prop). This is a novel runoff method that

we introduce and study, in which, once a pair of finalists is

sampled from the distribution returned in the first stage, each

finalist is selected with a probability equal to the fraction of

voters who prefer it. Unlike majority runoff, proportional

runoff uses randomization to select the winner among the

two finalists.

3.3 Distortion in Approval Voting
As stated earlier, our goal is to select a candidate with high social

welfare. Since the voting systems defined above have access to

only partial information about voter utilities, we use the notion of

distortion proposed by Procaccia and Rosenschein [26] to quantify

how well a voting rule 𝑓 maximizes social welfare.

Define the distortion of a distribution over candidates 𝑥 ∈ Δ(𝐶)
on a utility profile ®𝑢 as:

dist(𝑥, ®𝑢) = max𝑐∈𝐶 SW(𝑐, ®𝑢)
SW(𝑥, ®𝑢) .

For a single-stage approval voting rule 𝑓 , define its distortion

for utility profile ®𝑢 with respect to threshold 𝜏 as dist𝜏 (𝑓 , ®𝑢) =

dist(𝑓 ( ®𝜋), ®𝑢), where ®𝜋 is the approval profile induced by utility

profile ®𝑢 under threshold 𝜏 . The (overall) distortion of 𝑓 with respect

to 𝜏 is dist𝜏 (𝑓 ) = sup®𝑢 dist𝜏 (𝑓 , ®𝑢).
For a pair selection rule 𝑓1 and runoff rule 𝑓2 ∈ {maj, prop}

in two-stage approval voting with runoff, define its distortion for

a consistent pair of utility profile ®𝑢 and ranking profile ®𝜎 with

respect to threshold 𝜏 as dist𝜏 (𝑓2 ◦ 𝑓1, ®𝑢, ®𝜎) = dist(𝑓2 ◦ 𝑓1 ( ®𝜋, ®𝜎), ®𝑢),
where ®𝜋 is again the approval profile induced by utility profile ®𝑢
under threshold 𝜏 . The (overall) distortion of 𝑓 with respect to 𝜏 is

dist𝜏 (𝑓2 ◦ 𝑓1) = sup( ®𝑢,®𝜎) dist𝜏 (𝑓2 ◦ 𝑓1, ®𝑢, ®𝜎), where the supremum is

over consistent pairs of utility profiles and ranking profiles.

4 APPROVAL VOTING
We begin with an analysis of the simpler (single-stage) approval

voting, which we use as a benchmark in our analysis of approval

voting with runoff in the next section.

4.1 Deterministic Rules
First, we analyze the case where we want to select a winner deter-
ministically based on 𝜏-approval ballots. The next result shows that

when 𝜏 is too large, none of the voters might approve any candidate,

and a deterministic winner selected without any information about

voter utilities might incur unbounded distortion.

Theorem 4.1. For𝜏 > 1

𝑚−1 , any deterministic rule with𝜏-approval
ballots incurs unbounded distortion.

3
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Proof. Suppose none of the voters approve any candidate and

a deterministic voting rule selects candidate 𝑐 as the winner. We

construct the underlying utility profile ®𝑢 in which every voter 𝑖 has

utility 𝑢𝑖 (𝑐 ′) = 1

𝑚−1 for every candidate 𝑐 ′ ≠ 𝑐 , and 𝑢𝑖 (𝑐) = 0. Note

that this is consistent with empty 𝜏-approval ballots for 𝜏 > 1

𝑚−1 .
In this case, SW(𝑐, ®𝑢) = 0 whereas SW(𝑐 ′, ®𝑢) = 𝑛

𝑚−1 > 0 for any

other candidate 𝑐 ′, resulting in unbounded distortion. □

As empty approval ballots are uncommon, we briefly show that

when 𝜏 > 1

𝑚−1 and that every voter approves at least one candidate

(i.e., their top choice), distortion is at least Ω(𝑚). Suppose every
voter approves only one candidate, and the number of approvals

of each candidate is
𝑛
𝑚 . Consider an arbitrary deterministic rule,

and suppose it selects candidate 𝑐1, whose approvals have utility
1

𝑚 , while the approvals of other candidates have utility 1. Then,

distortion is at least

𝑛/𝑚·1
𝑛/𝑚·1/𝑚 = Ω(𝑚).

In contrast, when 𝜏 ⩽ 1

𝑚 , every voter must approve at least one

candidate by the unit-sum assumption, asmax𝑐 𝑢𝑖 (𝑐) ⩾ 1

𝑚

∑
𝑐 𝑢𝑖 (𝑐)

= 1

𝑚 . Hence, the pessimistic scenario in Theorem 4.1, in which

the approval ballots of all voters is empty, can no longer arise.

The following result shows an upper bound we can place on the

distortion in this case, using the most straightforward voting rule

that selects the most approved candidate as the winner. We later

show that this is optimal up to a constant factor.

Theorem 4.2. For 𝜏 ⩽ 1

𝑚 , selecting the most approved candidate
based on 𝜏-approval ballots achieves a distortion of at most 1

𝜏 +𝑚 − 1.

Proof. Let ®𝑢 be a utility profile and ®𝜋 be the induced 𝜏-approval

profile. Let 𝑐 be the most approved candidate with 𝑞 approvals.

Then, SW(𝑐, ®𝑢) ⩾ 𝑞 ·𝜏 . Since voter utilities are unit-sum and 𝜏 ⩽ 1

𝑚 ,

each voter approves at least one candidate. Hence, 𝑞 ⩾ 𝑛
𝑚 .

Let 𝑐∗ be an optimal candidate with the maximum social welfare

under ®𝑢. Then, SW(𝑐∗, ®𝑢) ⩽ 𝑞 · 1 + (𝑛 −𝑞) · 𝜏 , since at most 𝑞 voters

who approve 𝑐∗ can have utility at most 1 for it and the rest have

utility less than 𝜏 for it. Thus, the distortion is bounded by

𝑞 + (𝑛 − 𝑞) · 𝜏
𝑞 · 𝜏 ⩽

1

𝜏
+ 𝑛

𝑞
− 1 ⩽

1

𝜏
+𝑚 − 1,

where, in the last inequality, we used the fact that 𝑞 ⩾ 𝑛
𝑚 . □

We now prove that this upper bound is tight for deterministic

rules up to a constant factor. Note that for 𝜏 ⩽ 1/𝑚 and 𝑚 ⩾ 2,

1/𝜏 − 1 ⩾ 1/3 · (1/𝜏 +𝑚 − 1).

Theorem 4.3. For𝑚 ⩾ 3 and 𝜏 ⩽ 1

𝑚−1 , any deterministic rule
with 𝜏-approval ballots incurs a distortion of at least 1

𝜏 − 1.

Proof. Suppose that for each 𝑖 ∈ [𝑚], there are 𝑛/𝑚 voters who

approve candidates 𝑐𝑖 and 𝑐 (𝑖 mod𝑚)+1. Every voter has utility 1−𝜏
for their top choice, 𝜏 for their second choice, and 0 for the rest.

Let 𝑐 be the candidate selected by a deterministic rule. Let the

2𝑛/𝑚 voters approving 𝑐 have utility 𝜏 for 𝑐 and utility 1 − 𝜏 for

their other approved candidate. Pick any candidate 𝑐∗ ≠ 𝑐 , and let

the 2𝑛/𝑚 voters approving 𝑐∗ have utility 1−𝜏 for 𝑐∗ and 𝜏 for their
other approved candidate.

Under this utility profile ®𝑢, SW(𝑐, ®𝑢) = 𝜏 · 2𝑛𝑚 whereas SW(𝑐∗, ®𝑢) =
(1−𝜏) · 2𝑛𝑚 . Hence, the distortion is at least

(1−𝜏) ·2𝑛/𝑚
𝜏 ·2𝑛/𝑚 = 1

𝜏 − 1. □

We conclude by noting the distortion achievable by deterministic

rules in single-stage approval voting (along with the optimal choice

of 𝜏) based on the above results.

Corollary 4.4. For deterministic rules with 𝜏-approval ballots,
the optimal distortion is Θ(𝑚), which can be achieved by at 𝜏 = 1

𝑚
by selecting the most approved candidate.

4.2 Randomized Rules
We now proceed with randomized rules for single-stage approval

voting. Recall that when 𝜏 > 1

𝑚−1 , deterministic rules incur un-

bounded distortion due to the possibility of none of the voters

approving any candidate. In contrast, we show that with random-

ized rules, improved distortion bounds can be achieved precisely

by using such high values of 𝜏 . Our starting point is the simple

observation that selecting a candidate uniformly at random already

achieves a distortion of𝑚 regardless of 𝜏 and the approval profile

because the optimal candidate is selected with a probability of
1

𝑚 .

In the following theorem, we show that mixing uniformly random

selection with the deterministic strategy of selecting the most ap-

proved candidate achieves a significantly better distortion, as low

as 𝑂 (
√
𝑚) when 𝜏 = 1/

√
𝑚.

Theorem 4.5. For 𝜏 ∈ [ 1

𝑚 , 1], given 𝜏-approval ballots, the ran-
domized rule 𝑓 that,

(1) with probability 1/2, returns the most approved candidate, and
(2) with probability 1/2, returns a candidate uniformly at random,

achieves a distortion of at most 2 · ( 1𝜏 +𝑚𝜏).

Proof. Consider any utility profile ®𝑢 and induced 𝜏-approval

profile ®𝜋 . Let 𝑐 be the most approved candidate with 𝑞 approvals.

Hence, SW(𝑐, ®𝑢) ⩾ 𝑞𝜏 . It is easy to see that uniformly random

selection achieves an expected social welfare of
𝑛
𝑚 . Hence, the

expected social welfare under 𝑓 is SW(𝑓 ( ®𝜋), ®𝑢) ⩾ 1

2
·
(
𝑞𝜏 + 𝑛

𝑚

)
.

Let 𝑐∗ be an optimal candidate with the maximum social welfare.

Note that each of at most 𝑞 voters who approve 𝑐∗ has utility at

most 1 for it, while the rest have utility at most 𝜏 for it. Hence,

SW(𝑐∗, ®𝑢) ⩽ 𝑞 · 1 + (𝑛 − 𝑞)𝜏 . Therefore,

dist𝜏 (𝑓 ) ⩽
𝑞 + (𝑛 − 𝑞) · 𝜏
1/2 · (𝑞𝜏 + 𝑛/𝑚) ⩽ 2 ·

(
1

𝜏
+𝑚𝜏

)
. □

By setting 𝜏 = 1√
𝑚
, the theorem above yields a distortion of

𝑂 (
√
𝑚), which improves upon the best distortion attainable with

deterministic rules.

It is worth mentioning that while using uniformly random se-

lection with 1/2 probability may seem unjustifiable, changing the

1/2 to any (ever so small) constant probability retains the distortion

guarantees of Theorem 4.5 asymptotically. Furthermore, if all vot-

ers prefer one candidate to another, shifting any probability mass

placed on the latter (Pareto dominated) candidate to the former can

only improve distortion.

Now, we show the tightness of the bounds given in Theorem 4.5.

Theorem 4.6. Any randomized rule with 𝜏-approval ballots incurs
a distortion of at least 𝑚

2
for 𝜏 ⩽ 1

2𝑚 , and 1

8
·
(
1

𝜏 +𝑚𝜏
)
for 𝜏 ⩾ 1

2𝑚 .

Proof. First, we prove the result for 𝜏 ⩾ 1/
√
𝑚. In this case,

since 1/𝜏 ⩽ 𝑚𝜏 , it is sufficient to prove a lower bound of
1

4
·𝑚𝜏 .



Consider an approval profile ®𝜋 in which for each 𝑖 ∈ [𝑚], there
are 𝑛/𝑚 voters approving only candidate 𝑐𝑖 . Let 𝑓 be any random-

ized rule. There must exist a candidate 𝑐 that is selected under

𝑓 ( ®𝜋) with probability at most
1

𝑚 . Now, consider a consistent util-

ity profile ®𝑢, in which the 𝑛/𝑚 voters approving 𝑐 have utility 1

for it and 0 for every other candidate; while every other voter

has utility 𝜏 for her approved candidate, 𝜏/2 for 𝑐 , and the other

1 − 3𝜏/2 utility divided equally between the remaining candidates.

In this case, SW(𝑐, ®𝑢) ⩾ 𝑛𝜏/2. Whereas, for every 𝑐 ′ ∈ 𝐶 \ {𝑐},
SW(𝑐 ′, ®𝑢) ⩽ 𝑛/(𝑚 − 1) because, due to symmetry, a social welfare

of at most 𝑛 (precisely 𝑛 − SW(𝑐, ®𝑢)) is divided equally between the

remaining𝑚 − 1 candidates.

dist𝜏 (𝑓 ) ⩾
SW(𝑐, ®𝑢)

1

𝑚 · SW(𝑐, ®𝑢) +
(
1 − 1

𝑚

)
· 𝑛
𝑚−1

⩾
1

1

𝑚 + 2

(𝑚−1) ·𝜏
⩾ (𝑚 − 1) · 𝜏 ⩾ 1

4

·𝑚𝜏.

Next, we consider
1√
𝑚
⩾ 𝜏 ⩾ 1

2𝑚 . Here, since 1/𝜏 ⩾ 𝑚𝜏 , it is

sufficient to prove a lower bound of
1

4𝜏 . Consider an approval pro-

file ®𝜋 in which every voter approves the set of candidates 𝐴𝜏 =

{1, 2, . . . , ⌈ 1

2𝜏 ⌉}. Let 𝑐 be the candidate among 𝐴𝜏 that is selected

with probability at most
1

|𝐴𝜏 | ⩽ 2𝜏 under 𝑓 ( ®𝜋). Consider a consis-
tent utility profile ®𝑢 in which every voter has utility 𝜏 for every

candidate in 𝐴𝜏 \ {𝑐} (this is less than 1/2 in total), and the re-

maining utility of at least 1/2 for 𝑐 . Hence, SW(𝑐, ®𝑢) ⩾ 𝑛/2; for all
𝑐 ′ ∈ 𝐴𝜏 \ {𝑐}, SW(𝑐 ′, ®𝑢) = 𝑛𝜏 ; and, the social welfare of every other

candidate is 0. Since 𝑐 is selected with probability at most 2𝜏 by 𝑓 ,

dist𝜏 (𝑓 ) ⩾
SW(𝑐, ®𝑢)

2𝜏 · SW(𝑐, ®𝑢) + (1 − 2𝜏) · 𝑛𝜏 ⩾
1

2𝜏 + 2𝜏
⩾

1

4𝜏
.

At 𝜏 = 1

2𝑚 , the lower bound is equal to
𝑚
2
. In the instance de-

scribed above with 𝜏 = 1

2𝑚 , every voter approves all the candidates,

and has utility
1

2
+ 1

2𝑚 for her top choice and
1

2𝑚 for every other

candidate. The same lower bound of
𝑚
2
holds for lower values of

𝜏 < 1

2𝑚 using the same example. □

By Theorems 4.5 and 4.6, we identify the optimal distortion

attainable using randomized rules as follows.

Corollary 4.7. For randomized rules with 𝜏-approval ballots, the
optimal distortion value is Θ(

√
𝑚), which is achievable at 𝜏 = 1√

𝑚
.

5 APPROVAL VOTINGWITH MAJORITY
RUNOFF

In this section, we show how distortion worsens (i.e., increases) for

both deterministic and randomized rules when a majority runoff is

added to the process.

It is worth remarking that additional information is gained dur-

ing the runoff stage, which cannot necessarily be known from the

approval ballots in the first stage. One might wonder whether this

additional information can help select a better candidate; we prove

that this is not true, at least in the worst case. The reason is that

the imposition of a majority runoff constrains the process; e.g., a

Condorcet loser — a candidate preferred to any other candidate

by only a minority of voters — can never be selected as the final

winner. The following example shows that this already incurs a

distortion of Ω(𝑚).

Example 5.1 (Valuable Condorcet Loser). Consider the example

in Table 2, in which
𝑛
2
− 1 voters have a utility of 1 for candidate

𝑐1, while the other
𝑛
2
+ 1 voters have zero utility for 𝑐1.

Table 2: Utility profile of an instance where the Condorcet
loser 𝑐1 has high social welfare compared to others.

Voter 𝑢𝑖 (𝑐1) 𝑢𝑖 (𝑐 ′),∀𝑐 ′ ∈ 𝐶 \ {𝑐1}
𝑖 ∈ {1, . . . , 𝑛/2 − 1} 1 0

𝑖 ∈ {𝑛/2, . . . , 𝑛} 0 1/(𝑚−1)

Under this utility profile ®𝑢, the social welfare of 𝑐1 is SW(𝑐1, ®𝑢) =
𝑛
2
− 1, whereas SW(𝑐 ′, ®𝑢) =

𝑛/2+1
𝑚−1 for all 𝑐 ′ ∈ 𝐶 \ {𝑐1}. However,

𝑐1 is the Condorcet loser because
𝑛
2
+ 1 voters prefer every other

candidate to 𝑐1, so it must be selected with zero probability under

approval voting with majority runoff. Hence, the distortion of any

(even randomized) rule is at least

𝑛/2−1
(𝑛/2+1)/(𝑚−1) = Ω(𝑚).

We have shown the following.

Theorem 5.2. In approval voting with majority runoff, any (ran-
domized) pair-selection rule incurs a distortion of Ω(𝑚), even if the
rule is given access to exact voter utilities.

In the rest of the section, we show that the optimal distortion for

deterministic rules is in fact worse (Θ(𝑚2)), while this lower bound
is tight for randomized rules. In both cases, the optimal distortion

is achieved at 𝜏 = 1

𝑚 , in contrast to the case of no runoff.

5.1 Deterministic Rules
Similar to Theorem 4.1, we argue that using a large value of 𝜏 can

lead to high distortion for deterministic rules, as voters may not

approve any candidates. Due to space limits, we defer the proof to

the full version.

Theorem 5.3. In approval voting with majority runoff, for 𝜏 >
1

𝑚−2 , any deterministic rule incurs an unbounded distortion.

In contrast, when 𝜏 ⩽ 1

𝑚 , each voter approves at least one can-

didate. A reasonable rule in this case returns the two candidates

with the highest numbers of approvals, breaking ties arbitrarily. We

analyze the distortion of this rule in the following lemma, and later

prove that this is optimal up to a constant factor.

Theorem 5.4. In approval voting with majority runoff, for 𝜏 ⩽ 1

𝑚 ,
selecting the two candidates with the highest numbers of approvals
achieves a distortion of at most 2𝑚

𝜏 .

Proof. Consider any instance with utility profile ®𝑢 and approval

profile ®𝜋 . Let 𝑐1 and 𝑐2 be the two most approved candidates with 𝑞1
and 𝑞2 approvals, respectively, with 𝑞1 ⩾ 𝑞2. If 𝑐1 wins the runoff,

then by Theorem 4.2 distortion is bounded by
1

𝜏 +𝑚 − 1 which is

better than the sought
2𝑚
𝜏 bound.

Next, suppose 𝑐2 wins the runoff. Note that 𝑐2 must be preferred

to 𝑐1 by at least
𝑛
2
voters. Further, each such voter approves at least

her most preferred candidate (which is not 𝑐1) due to 𝜏 ⩽
1

𝑚 . Hence,

candidates in 𝐶 \ {𝑐1} have a total of at least 𝑛
2
approvals. Since 𝑐2

has the highest number of approvals among such candidates, 𝑞2 ⩾



𝑛/2
𝑚−1 ⩾

𝑛
2𝑚 . Thus, SW(𝑐2, ®𝑢) ⩾ 𝑛𝜏

2𝑚 . Furthermore, as SW(𝑐, ®𝑢) ⩽
𝑛 − SW(𝑐2, ®𝑢) for any candidate 𝑐 ≠ 𝑐2, we have that the distortion

of 𝑓 is at most

𝑛 − SW(𝑐2, ®𝑢)
SW(𝑐2, ®𝑢)

⩽
𝑛

𝑛𝜏/(2𝑚)
− 1 =

2𝑚

𝜏
− 1. □

To show the optimality of the distortion bound proven above,

we can utilize Example 5.1 and the example presented in Theo-

rem 4.3. The idea is to have a Condorcet loser that is the top rank

of
𝑛
2
− 1 voters with a utility of 1, which cannot win the election.

The approval profile of the rest of the agents is as constructed in

Theorem 4.3. In Theorem 4.3, we show the winner has a social

welfare of at most
𝑛
𝑚 · 𝜏 . The social welfare of the Condorcet loser

in this new example is
𝑛
2
− 1. Therefore, we obtain a distortion

lower bound of

𝑛/2−1
𝑛/𝑚·𝜏 ⩾

𝑚
2𝜏 − 1. We defer the complete proof of

Theorem 5.5 to the full version.

Theorem 5.5. For 𝜏 ⩽ 1

𝑚−2 , in approval voting with majority
runoff, any deterministic rule incurs a distortion of at least 𝑚

2𝜏 − 1.

We conclude by noting the distortion achievable by determinis-

tic rules in approval voting with majority runoff (along with the

optimal choice of 𝜏 ) based on the above results (Theorems 5.3 to 5.5).

Corollary 5.6. In approval voting with majority runoff, the op-
timal distortion value for deterministic rules is Θ(𝑚2) which can be
achieved at 𝜏 = 1

𝑚 .

5.2 Randomized Rules
Next, we turn to randomized rules for approval voting withmajority

runoff. Recall that Theorem 5.2 shows a distortion better than𝑂 (𝑚)
is infeasible, even with randomization. We present an upper bound

of 𝑂 (𝑚) that shows the optimal distortion value for randomized

rules is Θ(𝑚). Moreover, similar to the case of deterministic rules,

the outcome of adding a majority runoff to approval voting is an

increase in distortion of randomized rules from Θ(
√
𝑚) to Θ(𝑚).

The following is a technical lemma showing an upper bound

on the social welfare of a Condorcet loser (if existent), which is

useful for proving our upper bound. The proof is provided in the

full version.

Lemma 5.7. If a candidate 𝑐 is the Condorcet loser in an instance,
then SW(𝑐) ⩽ 𝑛

2
+ 𝑛

2𝑚 .

Now, we are ready to present the randomized rule that achieves

the optimal distortion when a majority runoff is used. The idea is

to always include the most approved candidate as a finalist, and

for the second finalist, we show that mixing uniformly random

selection with the deterministic strategy of selecting the second

most approved candidate, achieves a distortion of 𝑂 (𝑚) at 𝜏 = 1

𝑚 .

Due to space limits, we defer the proof to the full version.

Theorem 5.8. For 𝜏 = 1

𝑚 , let 𝑐1 and 𝑐2 be the two candidates with
highest number of approvals, then the randomized rule 𝑓 that

(1) with probability 1/2, selects (𝑐1, 𝑐2) as finalists,
(2) and with probability 1/2, selects the pair (𝑐1, 𝑐 ′) with a random

candidate 𝑐 ′ ∈ 𝐶 \ {𝑐1, 𝑐2} as finalists,
achieves a distortion of at most 4𝑚.

We conclude by noting the optimal distortion attainable using

randomized rules in approval voting with majority runoff.

Corollary 5.9. In approval voting with majority runoff, the op-
timal distortion value of randomized rules is Θ(𝑚) which can be
achieved at 𝜏 = 1√

𝑚
.

6 APPROVAL VOTING WITH PROPORTIONAL
RUNOFF

In the previous sections, we analyzed the distortion of approval

voting with and without majority runoff. Our findings show that the

use of majority runoff increases distortion in both deterministic and

randomized scenarios. To mitigate this, we propose an alternative

runoff method - proportional runoff - and present a detailed analysis

of approval voting with proportional runoff in this section.

6.1 Deterministic Rules
We show that the use of proportional runoff in approval voting

reduces the distortion of deterministic rules from Θ(𝑚2), observed
when majority runoff is used, to Θ(𝑚).

Theorem 5.3 shows that for 𝜏 > 1

𝑚−2 , there exists an example

such that the pair of candidates picked by any deterministic pair

selection have zero social welfare and, hence, unbounded distortion.

Corollary 6.1 (Theorem 5.3). In approval voting with propor-
tional runoff, for 𝜏 > 1

𝑚−2 , any deterministic rule incurs unbounded
distortion.

Recall that when 𝜏 ⩽ 1

𝑚 , every voter must approve at least one

candidate. The following result analyzes the pair selection that

elects the two most approved alternatives as finalists (breaking tie

arbitrarily). We later prove that this is optimal up to a constant

factor. In Theorem 5.4, we show that the same method achieves the

optimal distortion with majority runoff.

Theorem 6.2. In approval voting with proportional runoff, for
𝜏 ⩽ 1

𝑚 , selecting the two candidates with the highest number of
approvals achieves a distortion of at most 8

(
1

𝜏 +𝑚
)
.

Proof. Consider any instance with utility profile ®𝑢 and approval

profile ®𝜋 . Suppose 𝑐1 and 𝑐2 are the two most approved candidates

with 𝑞1 and 𝑞2 approvals respectively. If the majority of voters

prefer 𝑐1 to 𝑐2, then 𝑐1 is selected with probability at least 1/2, and,
by Theorem 4.2, distortion is bounded by 2 · ( 1𝜏 +𝑚 − 1). Otherwise,
𝑐2 wins the pairwise comparison and is selected with probability at

least 1/2.
Among the 𝑞1 voters who approve 𝑐1, either half of them have

𝑐1 ≻ 𝑐2 and Pr[𝑐1] ⩾ 𝑞1/2
𝑛 , or at least half of them have 𝑐2 ≻

𝑐1 and approve both 𝑐2 and 𝑐1. In the latter, 𝑞2 ⩾
𝑞1
2
. Therefore,

with probability at least 1/2, we select a candidate with
𝑞1
2

(half

of the maximum) approvals. Following the proof of Theorem 4.2,

distortion would be bounded by 4 · ( 1𝜏 +𝑚− 1). The only remaining

case, is when Pr[𝑐1] ⩾ 𝑞1/2
𝑛 .

• Case 𝑐∗ = 𝑐1. Then, from𝑞1 ⩾
𝑛
𝑚 , we have Pr[𝑐1] = Pr[𝑐∗] ⩾

𝑞1/2
𝑛 ⩾ 1

2𝑚 . Hence, distortion is bounded by 2𝑚.



• Case 𝑐∗ ≠ 𝑐1. Then, 𝑐
∗
has at most 𝑞2 approvals, and

E[SW(prop ◦ 𝑓 , ®𝑢)] ⩾ (Pr[𝑐1] · 𝑞1 + Pr[𝑐2] · 𝑞2) · 𝜏

⩾

(
𝑞1

2𝑛
· 𝑞1 +

1

2

· 𝑛 − 𝑞1

𝑚

)
𝜏 .

If 𝑞1 ⩾
𝑛√
2𝑚

, we have
𝑞1 ·𝑞1
𝑛 ⩾ 𝑛

2𝑚 . Otherwise, as
𝑛√
2𝑚
⩽ 𝑛

2

(holds for𝑚 ⩾ 2), we have
𝑛−𝑞1
𝑚 ⩾ 𝑛

2𝑚 . Hence, E[SW(prop◦
𝑓 , ®𝑢)] ⩾ 𝑛

4𝑚 · 𝜏 . This bound combined with E[SW(𝑓 )] ⩾
Pr[𝑐2] · 𝑞2𝜏 results in

E[SW(prop ◦ 𝑓 , ®𝑢)] ⩾ 1

2

(
Pr[𝑐2] · 𝑞2𝜏 +

𝑛

4𝑚
· 𝜏
)
.

Furthermore, SW(𝑐∗, ®𝑢) ⩽ 𝑞2 + (𝑛 − 𝑞2)𝜏 (approvals with

utility 1 and non-approvals with utility at most 𝜏 ). Therefore,

distortion is bounded by

SW(𝑐∗, ®𝑢)
E[SW(prop ◦ 𝑓 , ®𝑢)] ⩽

𝑞2 + (𝑛 − 𝑞2)𝜏
1

2

(
Pr[𝑐2] · 𝑞2𝜏 + 𝑛

4𝑚𝜏
)

⩽ 2 · 𝑞2 + 𝑛𝜏
1

2
· 𝑞2𝜏 + 𝑛

4𝑚𝜏
⩽ 8

(
1

𝜏
+𝑚

)
. □

We now prove that this upper bound is tight for deterministic

rules up to a constant factor. Note that for 𝜏 ⩽ 1

𝑚 ,
1

𝜏 +𝑚 ⩽ 2

𝜏 . As

the lower bound construction is similar to Theorem 4.3, we defer

the proof to the full version.

Theorem 6.3. In approval voting with proportional runoff, for 𝜏 ⩽
1

𝑚−2 , any deterministic rule incurs a distortion of at least 1

2
·
(
1

𝜏 − 1

)
.

We conclude by noting the optimal distortion for deterministic

rules with proportional runoff.

Corollary 6.4. In approval voting with proportional runoff, the
optimal distortion value for deterministic rules is Θ(𝑚) which can be
achieved at 𝜏 = 1

𝑚 .

6.2 Randomized Rules
Now, we turn to randomized rules in approval voting with pro-

portional runoff. The improvement in distortion of deterministic

rules with proportional runoff compared to majority runoff, hints

that distortion of randomized rules should also improve from Θ(𝑚)
when majority runoff is used. While we were unsuccessful in find-

ing upper bounds better than𝑂 (𝑚), we prove that distortion in this

setting is𝜔 (
√
𝑚); more specifically, we prove that it is Ω(𝑚0.6), and

we leave this gap in the optimal distortion value (between Ω(𝑚0.6)
and 𝑂 (𝑚)), as an open problem.

The following observation helps to apply some known results in

previous settings to the setting with proportional runoff.

Proposition 6.5. Let 𝑓 be a pair selection rule. Then, for all 𝜏 ∈
[0, 1] and𝑚, we have

1

2

dist𝜏 (𝑚) ⩽ dist𝜏 (prop ◦ 𝑓 ) ⩽ 2 · dist𝜏 (maj ◦ 𝑓 )

where dist𝜏 (𝑚) = min𝑓 ′ dist𝜏 (𝑓 ′) is the optimal distortion of all
randomized approval voting rules.

Proof. As proportional runoff selects the majority winner by

a probability of at least
1

2
(at least 𝑛/2 voters prefer the majority

winner), E[SW(prop ◦ 𝑓 )] ⩾ E[ 1
2
SW(maj ◦ 𝑓 )], which yields the

second inequality.

The first inequality follows from the fact that E[SW(prop◦ 𝑓 )] ⩽
E(𝑐1,𝑐2)∼𝑓 [SW(𝑐1)+SW(𝑐2)] = 2·E𝑐∼𝑓 [SW(𝑐)], where the last term
is an expectation with marginal probabilities that 𝑐 appears in the

pair returned by 𝑓 . This is similar to drawing two candidates from

a single-stage voting rule. Thus, any lower bound on distortion of

single-stage approval voting, holds for approval voting with runoff

by an additional factor of 1/2. □

By the above observation the prior bounds on the distortion of

approval voting with or without majority runoff, we conclude the

following bounds for the setting with proportional runoff.

Corollary 6.6. In approval voting with proportional runoff, 𝜏 =
1

𝑚 , there exists a randomized rule that achieves distortion of 𝑂 (𝑚).
Furthermore, any randomized rule incurs a distortion of Ω(𝑚) for
𝜏 ⩽ 1

𝑚 , and Ω( 1𝜏 +𝑚𝜏) for 𝜏 ⩾ 1

𝑚 .

Proof. By Proposition 6.5, the upper bound follows from Theo-

rem 5.8 and the lower bound follows from Theorem 4.6. □

So far, we have shown that distortion is Ω(
√
𝑚). Theorem 6.7

presents an improved lower bound for when 𝜏 ⩾ 3

𝑚−1 , specifically
for the setting with proportional runoff.

Theorem 6.7. In approval voting with proportional runoff, for
𝜏 ∈ [ 3

𝑚−1 , 1], any randomized rule incurs a distortion of at least
Ω
(
min{𝑚, (𝑚𝜏)3/2}

)
.

For 𝜏 ⩾ 1√
𝑚
, Corollary 6.6 shows a lower bound of Ω(𝑚𝜏) which

is outperformed by Ω((𝑚𝜏)3/2) upper bound in Theorem 6.7. For

𝜏 ∈ [ 3

𝑚 , 1√
𝑚
], Corollary 6.6 shows a lower bound of Ω( 1𝜏 ) while

Theorem 6.7 shows a Ω((𝑚𝜏)3/2). The former is a decreasing func-

tion as 𝜏 increases and the latter is an increasing function. By com-

bining the two, we get a lower bound of max{ 1𝜏 , (𝑚𝜏)3/2} which is

minimized at
1

𝜏 = (𝑚𝜏)3/2, i.e., 𝜏 =
(
1

𝑚

)
3/5

. Thus, we get a lower

bound of Ω(𝑚0.6) for distortion in this setting.

Corollary 6.8. In approval voting with proportional runoff, the
optimal distortion value for randomized rules is between 𝑂 (𝑚) and
Ω(𝑚0.6). The upper bound of 𝑂 (𝑚) is achievable at 𝜏 = 1

𝑚 .

7 EXPERIMENTS
In this section, we evaluate the empirical performance of several

rules in approval voting with or without a runoff. We measure

the average-case approximation ratio between the social welfare

achieved by these rules and the optimal social welfare over synthetic

and real-world data sets.

Rules. For two-stage rules, we investigate pair selection rules

introduced by Delemazure et al. [14]. Each rule in this class selects a

pair {𝑐, 𝑐 ′} of the candidates maximizing 𝑆 ®𝜋 (𝑐) +𝑆 ®𝜋 (𝑐) −𝛼𝑆 ®𝜋 (𝑐, 𝑐 ′)
for some 𝛼 ∈ [0, 1] where 𝑆 ®𝜋 (𝑐) is the number of the voters that

approve 𝑐 . This class is named 𝛼-AV rules. We use three rules from

this class: MAV (𝛼 = 0), PAV (𝛼 = 1/2), and CCAV (𝛼 = 1). We

also consider the sequential versions of these rules where the first

selected candidate is the most approved candidate and the second

candidate is selected to maximize the desired objective given a fixed

first candidate. The sequential version of MAV is the same as MAV,
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Figure 1: The average welfare ratio of different rules on syn-
thetic data with𝑚 = 20 candidates.

but for PAV and CCAV we name their sequential version SPAV and

SCCAV respectively.We use each of the rules defined in composition

with the majority and proportional runoff. We also consider three

single-stage rules. One deterministic rule: most approved candidate

(MAC), and two randomized rules: (1) proportional to approval

score (PAS) and (2) the rule that with probability 1/2 selects the most

approved candidate, and with probability 1/2 selects a candidate

uniformly at random (HMHU). In total, we have 13 different rules.

7.1 Synthetic Data
Data Generation.We use 𝑛 = 200 voters. For an instance with𝑚 can-

didates, we create an approval profile as follows. We first generate

𝑚 random permutations over the alternatives. For each voter, draw

one of these permutations as her preference ranking, and draw a

utility vector i.i.d. from a Dirichlet distribution with𝑚 concentra-

tion parameters all set to 1, i.e. Dir(1, ..., 1), and assign utilities of

the drawn vector according to the preference ranking. We gener-

ate the approval votes based on 𝜏 . For each𝑚 ∈ {5, 10, 15 . . . , 100}
and 𝜏 ∈ {0, 0.01, 0.02, . . . , 0.1, 0.15, 0.2, . . . , 1}, we report the average
welfare ratio achieved by the rules over 1000 generated instances.

The error bars show the standard error.

Results. Figure 1 shows the average welfare ratio (to the optimal

candidate) for MAV-P, MAV-M, and our single stage rules. As for

the other two-stage rules, we observe a pattern similar to MAV-M

and MAV-P when followed by a majority or proportional runoff

respectively. We observe that the average distortion of 𝛼-AV rules

has little dependence on whether we choose the two finalists by

maximizing the objective globally or sequentially. 𝛼-AV rules fol-

lowedwith amajority runoff achieve the lowest (best) welfare ratios.

Using proportional runoff worses the performance. Furthermore,

for smaller values of 𝜏 , the (deterministic) rule MAC outperforms

randomized single-stage rules (HMHU and PAS) and the two-stage

rules with proportional runoff.

Fromplots in the full version, we observe that the averagewelfare

ratio as a function of 𝜏 , decreases up to a certain value of 𝜏 and then

starts to increase, and this critical point depends on the value of𝑚.

This raises the question of what is the optimal value of 𝜏 for each𝑚.

To address this question, in Figure 2, we depict the optimal value of

𝜏 for different rules, and observe that the best 𝜏 is asymptotically

2/𝑚 for all the rules except PAS.
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Figure 2: The value of 𝜏 that gives the best distortion for
different voting rules.
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Figure 3: The average welfare ratio of different rules on in-
stances based on PrefLib SOC data with 𝜏 = 2

𝑚 .

7.2 PrefLib Data
We also run our experiment on 134 different real-world datasets

from PrefLib [24] (all datasets of type SOC, i.e., Strict Orders-

Complete List).We exclude the instances with less than 3 candidates.

Similar to the synthetic data experiments, we draw the utility vector

of each voter independently from the 𝑚-simplex and change its

order to make it consistent with the preference ranking. Based on

these utilities and with 𝜏 = 2/𝑚 (the optimal value suggested by

our prior experiment), we generate the approval votes and run our

rules. The average welfare ratio of some of the rules on this data

for different values of𝑚 is presented in Figure 3. The single-stage

MAC rule performs significantly worse than the two-stage rules

followed by either a proportional or majority runoff.

8 DISCUSSION
We studied the class of approval with runoff rules based in the

utilitarian distortion framework. We show that, compared to the

single-stage setting, distortion increases substantially when amajor-

ity runoff is used in the second round. We proposed the randomized

proportional runoff system, and showed that for deterministic rules,

it keeps distortion as low as it is in the single-stage setting. How-

ever, for randomized rules, we leave the optimal distortion value of

approval voting with proportional runoff as an open question.
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